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Estimation of power-law creep parameters from 
bend test data 

TZE-JER C H U A N G  
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Power-law creep parameters of brittle ceramic materials are commonly deduced from load- 
point displacement data generated by four-point bend experiments, under the assumption that 
tensile and compressive behaviours obey the same constitutive law. However, because of 
microcracking and cavitation, it is now well recognized that this premise may not always be 
valid. The present paper presents an analysis which takes the differences into account. 
Governing equations are first derived for the location of the neutral axis of a beam under 
bending which does not in general pass through the centroid of the cross-section, and for the 
creep response in terms of both curvature rate and load-point displacement rate as functions 
of the applied moment and power-law creep parameters. Numerical solutions are obtained for 
any given set of material constants over a wide range of applied moments. It is shown from 
the plots of creep response against applied moment on a logarithmic scale that even linear 
curves over a narrow range of applied moment do not necessarily imply identical stress 
exponents, and that non-linear curves concave upward signify a profound difference in stress 
exponent between tension and compression. An example is given of applying the present 
analysis to a set of load-point displacement data on glass-alumina beam specimens crept at 
1100 ° C. The results show that the conventional method over/underestimates the creep rates 
in compression/tension by two orders of magnitude, indicating a need for using the more 
accurate analysis presented here. Several recommendations are offered to improve the esti- 
mation of power-law creep parameters from bend test data. 

1. In t roduct ion 
The present paper is concerned with steady-state creep 
deformation behaviour of structural ceramics which 
are candidate materials for high-temperature stress- 
bearing applications, and aims at developing a 
mathematical scheme for which individual tensile and 
compressive power law creep parameters can be esti- 
mated from conventional four-point bend test 
measurements. Instead of directly relying on uniaxial 
testing, flexural test methods are frequently adopted 
as an alternative to generate data from which infor- 
mation on materials' creep behaviour may be 
extracted (see for example [1, 2]). This practice can be 
attributed to the fact that a bending experiment is 
more stable and easier to perform without involving 
problems of fixturing and alignment usually associ- 
ated with tension testing of brittle materials at high 
temperatures. A challenging issue that must be 
resolved for a given set of data produced from crept 
bend bars is: how can one, if possible, accurately 
estimate the uniaxial creep behaviour (both in tension 
and in compression) when the applied stress is given? 
Since bending data contain both tensile and com- 
pressive components, it is perhaps natural to expect 
that the resulting predictions would be strongly 
influenced by the form of the constitutive equations 
assumed a priori. 

Extensive literature review on the thermal creep of 
ceramics [3] indicates that generally speaking the 
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steady-state behaviour relating creep strain rate ~ to 
applied stress a can be described by Norton's law in a 
form es = A a", where A is a pre-exponent constant 
depending only on the test temperature and the 
material's properties; n is a stress exponent which may 
or may not depend on stress. Hollenberg et al. [4] 
presented the first analysis in which stresses and 
strains in the crept beam specimens can be calculated 
from the bend test data, provided the tensile power- 
law creep behaves identically to its compressive 
counterpart. This simplifies the analytical work sub- 
stantially and allows the solutions to be presented in 
closed forms, as the neutral axis location in this case 
always coincides with the centre line of the beam 
height regardless of the magnitude of the applied 
loads. 

However, it is now well recognized that tensile 
response might be distinct from its compressive 
counterpart inside a beam for a given material, even 
when tested under identical environments (see for 
example [5, 6]). Consequently, for application to plain 
concrete, Krajcinovic [7] developed a damage theory 
for beams under pure bending in order to justify that 
tensile stresses assume a parabolic distribution, in 
terms of strain while the compression behaviour 
remains linearly elastic obeying Hooke's law. More 
recently, Rosenfield et al. [8] extended this 
time-independent analysis to two more constitutive 
equations in tension, namely linear elastic with lower 
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effective Young's modulus and elastic-perfectly 
plastic while once again lea~ving the compressive 
portion unchanged. On the other hand, within the 
arena of power-law creep, Finnie [9] was the first 
to recognize the possible situation of pronounced 
differences between tensile and compressive creep. 
His analysis permits At :~ Ac and is capable of 
predicting creep rates from data generated by creep 
bending of a trapezoidal cross-section beam, provided 
nt and nc are equal to unity; here subscripts t and 
c refer to the cases of  tension and compression 
respectively. Talty and Dirks [10] extended the 
analysis of the same trapezoidal beam to a more 
general case of  N, an arbitrary number including unity 
(i.e. nt = n~ = N). 

The present paper extends the previous work to a 
completely general case of unequal tension and com- 
pression power-law creep behaviours, wherein not 
only the pre-exponent factors are permitted to be 
distinctive (& va Ac) but also the stress exponent con- 
stants may be unequal (nt ¢ no). For the sake of 
simplicity, only rectangular beams of uniform cross- 
sections are considered. Further, the existence of a 
steady-state is assumed so that time can be eliminated 
as a variable in the study. This assumption requires 
that the transient stage be short-lived and thus can be 
ignored, although it should be acknowledged that this 
phenomenon may sometimes become important 
[11, 12] when a well-defined steady state does not 
develop [13]. 

In the next section, governing equations are first 
derived which relate separately the position of the 
neutral axis and the applied moment to the curvature 
rate, R and (unknown, a priori) power-law creep par- 
ameters. Computer programs were developed to solve 
these coupled non-linear algebraic equations numeric- 
ally. Solutions are obtained in graphic form for an 
arbitrary set of power law constants. Graphic solu- 
tions are also given in terms of  the load-point displace- 
ment rate, 2Xp - a more measurable quantity than R 
for collecting data on a specimen's response. Cases of 
nt = n~ = N as examined by Talty and Dirks [101, 
and At = Ac = A, n~ = n~ = N as analysed by 
Hollenberg et al. [4] are then presented as special cases 
of the present investigation. From the point of view of 
an experimenter, in order to apply the current theory, 
a parametric study method must be used from which 
curves can be produced from the computer programs 
to match the discrete data points which are dictated by 
creep bend tests. Once accurate matching is 
achieved,the predicted power-law parameters become 
available at once from the well-fitted curve. For  the 
sake of demonstration of how to use the theory, an 
example is given to estimate the four power-law 
constants from a set of six bend test data on 
debased alumina beams crept at 1100°C for a 
duration of more than 100 h. At the conclusion, we are 
able to make some recommendations from the present 
analysis for those who prefer using the four-point 
bend test method to characterize power-law creep 
behaviour in structural ceramics. These suggestions 
should lead to more accurate characterization of creep 
properties. 

2. Analysis 
2.1, Derivation of the governing equations 
In this section, we derive the control equations that 
relate material response to external variables and 
material constants, for a rectangular beam under four- 
point creep bending (Fig. 1). 

As already discussed in the preceding section, under 
the action of some constant external loads the material 
is assumed to respond in the steady state according to 
a power law of the form 

es¢ = A~(cr/~o) "c ~ in compression (la) 

and 

e~t = At(~/~o) "~ a i n  tension (lb) 

where ~ is steady-state creep strain rate; A and n are 
material constants, a is the normal stress and a0 is a 
reference stress. The subscripts c and t refers to the 
case in compression and in tension respectively. A 
schematic sketch of Equation 1 applied to a beam is 
given in Fig. 2. 

The derivation that follows adopts the conventional 
simple beam theory which entails a fundamental 
assumption, known as Bernoulli's hypothesis, that 
planar sections remain plane during bending when 
creep is taking place so that no warping will occur 
(because of the need for geometric compatiblity this 
condition seems to hold in practice [14]). This implies 
that the strain rate ~ of a fibre element is linearly 
dependent on Y, the distance away from the neutral 
axis where ~ = 0, and the curvature rate R serves as 
a proportionality constant. Thus 

i = kY 

and the stress distribution over the cross-section of the 
beam is highly non-linear and has the following form, 
according to Equation 1: 

=  o\7 ) (2) 

regardless of the sign of the stress. Equilibrium 
requirements then dictate that the total force acting on 
the compression side of the cross-section be counter- 
balanced by its tensile counterpart. This means that 
, ~ - -  r t o r B j 0  a d Y  = BS0 c rdYwhereBi s thebeam 
width and H ( =  H~ + Ht) is the beam height (see Fig. 
1), By integrating a using Equation 2 and 1, and after 
some mathematical manipulations, this force balanc- 
ing equation finally reduces to 

Ln,(n~ + ~J J 
X "'chnt(nc+ l)lnc(nt+ 1) -[- h c -~-- l (3) 

where R = A~/Ac, l~ = KH/Ac  and hc = H c / H  are 
dimensionless parameters. Here we choose Ac as nor- 
malizing factor for R and / (p resumably  because A~ is 
much easier to measure than A t. Equation 3 is a non- 
linear algebraic equation of the form Cx ~ + x = 1 
for the unknown hc quantifying the physical location 
of the neutral axis. Since both C and n are positive 
definite, because parameters appearing in Equation 3 
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Figure 1 Schematic sketches of a four-point bend 
beam: (a) loading configuration, (b) representative 
cross-section, (c) typical element of deformed shape, 
(d) strain-rate distribution and (e) stress distributioa. 

denotes centre line of the beam. 

are all positive quantities, it can be proved from the 
form of  this non-linear algebraic equation that a 
unique solution for x always exists in the range 
0 < x < 1 beyond which no physical meaning may 
be assigned to x. 

In addition, the requirement that the total sum- 
mation of  moments produced by local tractions be 
equated to the external moment M forms the second 
governing equation, namely 

M = 2 + ~ a Y B d Y  

Substitution of Equation 2 for a = or(Y) and recog- 
nition of  h t 4- h¢ = 1 result in an equation relating 
the applied moment to the material's response k: 

, F/~l/., l/.,~ 
m = /~r'"c/  - -  nt ( l  - -  ho) (;~'+l)'/"' 

L Rl/nt 2nt 4- l 

g/c 1 + 2no +--------1 h~2"~+1~'"° (4) 

where m = M/(BH2~o) is the normalized applied 

moment. The assignment of the reference stress cr 0 is 
somewhat arbitrary. Since the unit of  the applied 
stress is generally expressed in MPa, it is convenient to 
set a0 = 1 MPa for simplicity. 

Equations 3 and 4 constitute a system of  algebraic 
equations for the two unknowns ho and k, while the 
remaining parameters such as the applied moment m 
and the values of  the materials parameters A and n are 
being treated as given. After examining the structure 
of these two equations, we arrive at the unfortunate 
conclusion that analytical solutions in closed form 
cannot be obtained because they are highly non-linear 
and coupled in/~. Accordingly, a numerical approach 
is the practical way to tackle this problem. A computer 
program was developed which contains the following 
primary tasks: first the development of  a subroutine to 
solve h c from Equation 3 by a Newton-Raphson  
iteration scheme. Inputs to this subroutine are R, nt, n~ 
and /~, the latter being treated as an independent 
variable. Note that initially an overshoot outside the 
range (0,1) for ho may arise during numerical iter- 
ations; stability can then be restored if h0 be reset to its 
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Figure 2 Schematic diagram of power- law constitutive 
equations in creep, showing distinct behaviours 
between tension and compression. 
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boundary value. Once hc is successfully solved from 
this subroutine it can then be used as input, together 
with the independent variable ~, to Equation 4 for the 
computation of m. At the end, a total of three one- 
dimensional arrays were generated, namely m,/~ and 
h~. This concludes the computation phase of  program- 
ming, and the plotting phase follows. The solutions 
were then displayed in graphic form for/~ against m as 
well as h~ against m with any given values of  A and n. 

2.2. General solutions 
2.2. 1. Location o f  neutral axis, h c 
The solutions for hc are plotted as a function of m in 
Fig. 3 for several ofnt  at no = 4.0, R = 1000. Gener- 
ally speaking for the practical range of m > 0.5, as 
the applied stress increases the compressive zone keeps 
shrinking with increasing nt. Intuitively this must be 
true since an increase in n t implies that the material's 
ability to support tensile stresses is reduced for a fixed 
creep rate. When nt = n~, ho ~ 0.2, independent of 
the applied stress. In fact, h~ can be expressed analyti- 
cally in the case of  equal n. This special case will be 
discussed later. Another interesting observation that 
can be extracted from Fig. 3 is at a value of  around 
one half, h~ is about 0.2 regardless of the value of n t. 
As a matter of fact, when examined over a broader 
range we found that when m lies between 0.25 and 0.4 
the solutions are quite insensitive to both n t and no, 

suggesting that this range of m should be avoided in a 
testing programme that aims to characterize the 
material's creep parameters. Fig. 4 presents another 
solution for hc for five values of  R, fixing values of nt 
and n c at 1 and 5 respectively. As expected, the higher 
the value of R the lower the size of compression zone, 
as high R implies that the material's creep resistance in 
tension is reduced at a given strain rate (or applied 
moment). When m exceeds 10, however, a major 
portion of  the beam is in compression for R values up 
to 1000. Conversely, setting n t = 5 and nc = 1 
demonstrated a reverse trend, as shown in Fig. 5 for 
the same five values of R. Again, cases of higher R 
result in a smaller compression zone as expected. 

2.2.2. Curvature rate o f  a beam element, 
The material's response in the form of curvature rate 
/~ under creep bending for a given applied moment m 
is plotted in Fig. 6 on a log-log scale for five values of 
n t and fixing n~ = 4 and R = 1000. Two important 
observations can be made here: (a) the curves appear 
linear with, of  course, always positive slopes when 
values of n t are in the neighbourhood of n~, but when 
the gap between the values of n t and n~ widens the 
curves become non-linear and concave upward; (b) a 
"blind point" in the vicinity of m = 1/2 is also 
observed, similar to the solutions of h~. Fig. 7 dem- 
onstrates the solutions of/~ upon variation of R under 
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app l i ed  m o m e n t  fo r  n t = l , n  c = 5 a n d R  = 0.1, 1, 10, 

100 a n d  1000. 



'• 1.0 

~o 0.9 

o 0.8 

z" o.7 

o 
I-. 0 .6  
< 

0 0.5 
o 
_J 

0.4 
m 

x 
< 0.3 

"-J 0.2 ,< 
n- = 
l-- 0.1;  
D 
ILl 
Z 0.0 

10 -1 

' \  

i 
10 0 10 ~ 

N O R M A L I Z E D  A P P L I E D  M O M E N T ,  m 

r 

lO  2 

Figure 5 C o m p r e s s i v e - z o n e  size s o l u t i o n s  as  a f u n c t i o n  

o f  t he  a p p l i e d  m o m e n t  a t  n t = 5, n c = l a n d  R = 0.1, 

1, 10, 100 a n d  1000. 

fixed values ofnt = 1 and n¢ = 5. Again, owing to big 
differences between the values of  nt and n¢, concave 
upward curves are obtained. Another interesting fea- 
ture worthy of  note is that the solutions converge into 
one single straight curve as the applied moment  
exceeds 15. This means that applying a load in excess 
e l m  = 15 would generate a straight line in the plot of  
/~ against rn, regardless of  the values of  R, and 
therefore this is not particularly useful. Lower loads 
(much less than m = 15) are thus recommended. If, 
on the other hand, nt = 5 >> no = 1 then the sol- 
utions are well-behaved in the practical range of  the 
applied load (0.01 ~< m ~< 100) as indicated in Fig. 8, 
although most of  the solutions appear  to be linear. 

2.2.3. Outer- f ibre s tresses.  ¢c a n d  Gt 
As can be seen from the preceding section, during 
steady state creep the neutral axis is displaced from the 
centroid and the stress distributions are highly non- 
linear. As a result, it is to be expected that the outer- 
fibre stresses, both at the tensile side as well as at the 
compression side, must in general differ from the 
initial elastic stress levels. In terms of the applied 
bending moment  M, the outer fibre elastic stresses 
both in tension and in compression have a value 
~ = 6M/(BH 2) from classical simple beam theory, 
and in terms of  dimensionless quantities there results 

8~ = 6 m, where 6e = a~/a 0 is the normalized outer- 
fibre elastic stress. 

The steady-state compressive creep stress at the 
outer surface of  the beam is 

<;c = ¢r0(~h¢) ~/Èc 

as evidenced from Equation 2. Normalizing against o-~ 
we have 

oo/~e = h3 (5) 

Similarly the creep stress at the tensile edge, also 
normalized by %, is 

" '  - ) -  f(1 - h¢)/R] ' /~' (6) 
0" e o m  

Examination of these two equations indicates that the 
outer-fibre creep stresses, unlike their elastic counter- 
parts, are not only a function of  applied moment,  but 
also dependent on the neutral axis location and the 
intrinsic power-law creep parameters.  The maximum 
compressive stresses for several values of  n t are plotted 
in Fig. 9, according to Equation 5, for typical values 
of  n~ = 4 and R = 1000. When m < 0.35 corres- 
ponding to an elastic stress of  about  2MPa ,  higher 
values of  n t yield lower compressive stresses; the 
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Figure 7 Typical  plots  of  £ aga ins t  m for n t = | ,  
n c = 5 and  R = 0. I, 1.0, 10, 100 and  1000. 

reverse situation occurs if the applied stress exceeds 
2 MPa. On the other hand the maximum tensile stresses 
at the outer fibre, as plotted in Fig. 10 from Equation 
6, show a unique feature, namely that for a fixed 
applied load in the practical range (1 to 600 MPa), low 
values of rt t yield higher tensile creep stresses. Note 
that in both cases, as shown in Figs. 9 and 10, in the 
case of nc = nt the outer fibre stresses are independent 
of the applied moment,  and as will be shown later in 
Section 2.3 they can be expressed in closed forms. 

2.2.4. Load-point displacement rate, A o 
As demonstrated in the preceding sections, /~ is a 
proper parameter to measure the response of creep for 
a bend bar under constant applied moments. Unfortu- 
nately, the curvature time-rate of a beam at a fixed 
location is difficult to measure in the laboratory, and 
it is general practice to measure instead the load-point 
displacements continuously as a function of time. 
Hence, it is desirable to present solutions in terms of 
Ap. 

For  a given material with a well defined/~ against m 
relationship the load-point displacement rate Ap 
incurred from a four-point bend beam can be solved 
numerically by integration of/~ along the beam length 
x, with linear moment distribution in the outer span 

and a constant maximum moment in the inner span. 
Here it is assumed that shear effects on the beam 
deflection y are negligible and the slopes of the 
deformed beam shape are small (dy/dx ~ 1). The 
differential equation that needs to be solved is then 
d 2 y / d x  2 =  / ~ ( x ) =  f(m) with /~ = f(m) given in 
Section 2.2.2. Setting the origin of the coordinate 
system at the mid-span of the deformed beam, the 
proper boundary conditions are y ( 0 ) =  0 and 
y'(0) = 0 due to symmetry. After the deformed 
shapes 3? = 3)(x) are solved, the load-point displace- 
ment rate is given by Ap = A(L/2) - A(l/2) where L 
and 1 are the lengths of major and minor spans respect- 
ively. Typical solutions are plotted in Fig. 11 for a 
non-dimensional load-point displacement rate, 
defined as Ap/HA¢ as a function of the applied 
moment m for several values of nt with nc = 4, R = 
1000, L = 41 and H/l = 1/2. Similarities between 
Fig. 6 and 11 are observed. Whenever n¢ = nt = N, 
the solution can be described by a linear curve owing 
to the fact that the relationship between Rp and Ap is 
linear and has a form 

4(N + 2) 
(L - l)[L + (X-t- 1)/] Ap 
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2.3. The special cases 
Having obtained the general solutions in the previous 
section, it is easy to arrive at the results for the special 
cases as considered by Hollenberg et al. [4] and Talty 
and Dirks [10]. 

2 . 3 .  1. T h e  c a s e  n t = nc = N;  R # 1 

This is the case considered by Talty and Dirks [10] and 

Cohrt et al. [12]. For this case, Equation 3 describing 
the location of the neutral axis takes the following 
simple form: 

l 
hc - 1 -1- R l/(u+l) ( 7 )  

independent of the applied moment m. This is in 
agreement with the work of Cohrt et al, [12] (See 

:~ I N I T I A L  O U T E R - F I B R E  E L A S T I C  S T R E S S ,  O e ( M P a )  

Q,. 1 lO l o o  
" ~  1o~r ' - ' -q  - i ~ ~ ' m , ~ J l  / I /  ~ ~ . ~ , ~  

1 0  7 

l O  5 

oZ,o, 

~O 1 0  2 ~ '  

<~ N 101 

10 0 
Jr" 10-1 10 0 101 10 2 
o 
z N O R M A L I Z E D  A P P L I E D  M O M E N T ,  m 

Figure 11 Plots  of  load-po in t  d i sp lacement  ra te  aga ins t  

m for several  values  of  n~ at  n~ = 4 and  R = !000; 

H/l = 1/'2 and  L/I = 4. 

171 



A 

ii 
v 

z 
o 
m 

,< 
O 
o 
_J 

m 
x 
< 

..J 
< 
n¢ 
t -  

w 
Z 

1.0 

0,9 

0.8 

0,7 

0 . 6  

0,5 

0.4 

0 . 3 - -  

0 . 2 - -  

0 . 1 - -  

0.0 
10 0 

~ x ~ ' " ' l  ' '  ~'""1 ~ ' ' ' " " l  ' ' ~ ' " " !  

\ \  

.2\ 

i i I I I I l [  I I i . . . i 1 ~  

101 10 2 10 3 10 4 10 5 

MAGNITUDE OF INTERCEPT, C 

Figure 12 Plots  of  h c aga ins t  C, C being the in tercept  of  

the l inear  plots  o f /~  aga ins t  m at  m = 1; it is thus  a 

measureab le  parameter ,  n t = n c = N. 

Equation 3 of [12] in which our R is equivalent to their 
S"). In addition, it can be shown from Equation 4 that 
the moment against curvature rate is linear when 
plotted on logarithmic scales, and therefore can be 
described by 

t~ = Crn N (8) 

where C is the intercept at m = 1 and is only a fun- 
ction of h~, R and N: 

I (2N + 1)IN .1 N 
C = h~ 2u+t)/u + (1 - h~)(2u+')/~R1/NJ (9) 

Fig. 12 presents the solutions of h~ for several values 
of N, based on Equation 7 as a function of C defined 
in Equation 9. Fig. 13 demonstrates the solutions for 
R. If  n~ = n t = N, the bend test data in terms of/~ 
against rn ought to be fitted by a linear curve on a 
logarithmic axis. A¢ is automatically obtainable from 
k and /~  (see Fig. 1 and definition of/~). C as well as 
N can then be extracted from this curve. Figs. 12 and 
13 can then be used to obtain h~ and R (and hence At) 
and the complete creep parameters are determined. 

2.3.2. The case o f  un i form proper ty  (n t = nc 
= N ; R =  1) 

This case has already been considered by Hollenberg 
et al. [4]. The neutral axis in this case always coincides 

with the centroid (i.e. h~ = 1/2) as can be shown from 
Equation 7 when R = 1 is substituted. Constitutive 
Equation 8 describing the relations between/~ and m 
is of course still valid, but the intercept C now takes 
the simple form 

/ 2 N  + I \N  
C(N)  = 2~ )~-~ ) (10) 

Fig. 14 is a plot of N against C from Equation 10. This 
can be used as a first step to check whether the 
material has uniform properties in creep, by checking 
the observed value of C to see if it agrees with the 
predicted value of C given by this plot. 

2.4. Application to g l a s s - a l u m i n a  
As an example of demonstrating the applicability of 
the present analysis, three loads of different 
magnitude were applied to beams of debased alumina 
(commercially known as AD-86* from Coors Corp.) 
at l l00°C in a four-point bend configuration with 
major and minor spans set at 40 and 10ram respect- 
ively. Load-point displacements are continuously 
monitored as a function of time. An apparent steady 
state was observed in all cases within 40 h. Table I lists 
the pertinent data of measurements. After data were 
taken, the first step is to plot/~p against m on logarith- 
mic scales. If the resulting curves are linear, the 

1 0 3  . . . . . . . .  . . . . . . . .  . . . . . . . .  
J 
J 

lO 2 - -  / 

( ~  N = 1 / 2  1 

1°1 / 
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~) 1 o ° 

° / ~< lo -1 

lO 2 

- - 3  I t i l l  I d  I I k l l l l l l  I I I I 11 

10 10 ° 101 10 2 10 3 10 4 10 s Figure 13 Plots  of  R aga ins t  C for the same fixed value  

M A G N I T U D E  O F  I N T E R C E P T ,  C of  N. 

*Cer ta in  commerc ia l  equ ipment ,  ins t ruments  or mate r ia l s  are  ident if ied in this  pape r  in order  to adequa te ly  specify the exper imenta l  

procedure .  Such ident i f ica t ion  does no t  imply  r e c o m m e n d a t i o n  or endo r semen t  by  the N a t i o n a l  Bureau  of  S tandards ,  nor  does i t  imply  tha t  

the mate r i a l s  ident if ied are necessar i ly  the best  ava i lab le  for the purpose .  
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Figure 14 Plots of  N against C when R = 1 and 
n t = n c = N. ~ = Cm N, C ( N )  = 212(2N + 1)/)'~1 ~. 

solutions presented in Section 2.3 can be used to check 
whether special cases apply. Since plotting of  data in 
Table I indicated non-linear behaviour (suggesting 
n t -~ nc)  , the special case discussed in Section 2.3 must 
be ruled out. Solutions of different R and n were 
produced in order to fit the data points. It was finally 
found that a special curve as shown in Fig. 15, with 
constant nc = 4, n t = - 1/2 and R = 50000, fits the 
data well. A~ was determined from the solution to be 
0.85 x 10 -j3 sec -1. Thus the steady-state tension 
creep behaviour of  this refractory material can be 
described by 

~st = 4.25 x 1 0 - 9 0  "1/2 

and the compression creep, on the other hand, by 

~sc = 0 . 8 8 5  X 10 -130  "4 

where ~ and cr have the units of  sec -I and MPa 
respectively. 

The predications strongly suggest a profound dif- 
ference of  creep behaviour between tension and com- 
pression. Uniaxial tension tests were also performed 
which yield the same order of magnitude as predicted 
by the current analysis. Additional tests in simple 
tension as well as in compression are being performed 
in order to verify the predictions. Detailed micro- 
structures of  these post-crept beam specimens are also 
being investigated in order to understand the rheology 
leading to the resulting power-law stress exponents. 
One dominating factor obtained from the preliminary 
studies is the observation of  compositional changes 
due to devitrification, resulting in drastic variation of  
viscosity in the grain-boundary liquid phases [15, 16]. 
This strong stress-dependent viscosity, coupled with 
local recrystal/ization in the compression zone and 

dilatancy and/or  cavitation in the tension region, may 
be responsible for the unequal stress exponents. 

In contrast, the conventional method assumes 
R = 1 and n t = n c = N so that the outer fibre creep 
rate can be computed from the load-point displace- 
ment rate data by the following equation: 

2(N + 2)HAp 
~ss ~-  

(L  -- I ) [ L  + (N + 1)I] 

and the outer-fibre stresses by 

(2 N  + 1 \  
) 

Table lI lists the resulting outer-fibre creep rates and 
stresses computed from the same set of  load-point 
displacement data tabulated in Table I. A plot of  i~s 
against o- e on logarithmic scales by the least squares 
method, as shown in Fig. 15, leads to a prediction of 
A = 1.71 x 10 -Hsec - ] a n d N =  1.86. Hence we see 
that there are substantial differences in the prediction 
of  power-law creep parameters between the present 
analysis and the conventional method. Notice that 
At < A < Ac and //t < N < no, implying that the 
conventional techniques, by imposing uniform 
properties, effectively generate an average in bending 
creep. 

3. D i s c u s s i o n  
We have presented a viable technique by which 
individual tension and compression creep behaviours, 
being equal or not, can be predicted directly from 
bend test data. Several main features in the analysis 
are noteworthy: 

1. The neutral axis of  the beam cross-section is, in 

T A B LE I Calculations of normalized load-point displacement rates from four-point  bend data  of  g l a s s -a lumina  tested at 1100 ° C. 
Power-law creep parameters were then obtained based on the present analysis. 

Specimen Beam height a. m 1010 X Z~p 107 X A p / H  10 6]~p/HAc 

No. H (mm) (MPa) (m sec- t ) (sec- l ) 

l 2.785 20 3.333 5.185 1.862 2.191 
2 2.785 20 3.333 4.719 2.694 1.993 
3 2.770 30 5.000 6.311 2.278 2.680 
4 2.770 30 5.000 6.656 2.403 2.827 
5 2.770 40 6.666 11.50 4.152 4.885 
6 2.770 40 6.666 11.57 4.177 4.914 
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Figure 15 Plot of four-point bend test data on 
glass-alumina crept at ll00°C in the space of 
log(z~v/HAo) against logm, indicating a good 
match at a solution (o) for R = 50000, n c = 4 and 
n c = 1/2. The power-law creep parameters are then 
p r e d i c t e d  a s  Ao = 0 .85  x 1 0 - 1 3 s e c  i n c = 4 ;  

At = 4.25 x 10-9sec 1, n t = 1/2. For com- 
parison purposes, a linear plot based on the conven- 
tional method is also given (A); this predicts 
~ss = 1.71 × 10-110 -1'86. 

general, not located at the centroid; the location is not 
only a function of the material's constants but also of 
the applied loads. This is generally indicated by obser- 
vations of significant densities of cavities developed 
over 50% of the beam cross-section, suggesting that 
the neutral axis has migrated towards the compressive 
side. 

2. If  a plot of  data for/~ against m shows strong 
non-linearity which is concave upward, there will be a 
big difference between nc and nt. 

3. There exists an applied load for all materials, in 
the neighbourhood of  1 to 2 MPa of initial outer-fibre 
elastic stress, under which the material response in R 
or A v will be insensitive to n, suggesting that this load 
level is not useful in the test programme. 

4. If/~ against m data demonstrate a linear response 
on logarithmic axes, then the results given in Section 
2.3 can first be used to ascertain whether the material 
possesses uniform creep properties. Otherwise, the 
general solution scheme as detailed in Section 2.1 has 
to be adopted since a linear curve within a short range 
of m does not necessarily mean that n t = n c as evi- 
denced from Fig. 7. An example was given in Section 
2 to show how to apply the current analysis to a 
realistic case. 

However, the analysis does have some restrictions 
and limitations built in which ought to be borne in 
mind. First, the constitutive law is assumed to take a 
power-law equation form with the distinction being 

made through the variat ions in n and A. Microscopic 

observat ions including scanning electron microscopy 
(SEM and  STEM) have showed that  in a general 

ceramic system, cracks and  cavities are developed in 

different pat terns both  in terms of density and orien- 

tat ions inside the tensile and  compressive zones of a 

crept bend specimen. Hence, cracking and  cavi tat ion 

play an impor t an t  role in the con t r ibu t ion  to creep 
resulting in distinct behaviours.  Secondly, no 

deformat ion  mechanism changes are assumed to take 

place under  uniaxial  loading so that  a single power- 

law equat ion  completely characterizes the creep 

behaviour.  Consequent ly ,  the current  analysis is not  

applicable to materials  exhibit ing bi-l inear law, 
a l though in principle a numerical  scheme may be 

developed to handle  this case. Final ly,  the problem of 
creep fracture is no t  addressed in this paper. As a 

result, the solut ions presented here are assumed to be 
valid irrespective of how high a load is applied. Realisti- 

cally, however, as the loads become higher and  higher, 

the solut ions will always be termed invalid somewhere 
by premature  failure due to void growth and  flaw 

linkage. The predict ion of  rupture  time as a funct ion 

of applied stress is thus an impor t an t  area which 

warrants  further studies. 

Rosenfield e t  al .  [8] recently presented a similar 
t ime- independent  analysis on a beam with three dif- 
ferent tensile laws. By fixing the compression 
behaviour  as linearly elastic, they found an interest ing 
result that  at 1/5 of the beam depth from the tension 

TABLE II Computation of strain rates for the same set of data listed in Table I. Different power-law creep parameters were then 
predicted based on conventional method. 

Specimen Beam height Outer-fibre Outer-fibre 10 t° x Ap 109 x creep rate 
No. H(mm) elastic stresses creep stresses (m s e e -  1 ) ~ss(Se c - i  ) 

ae(MPa) a(MPa) 

1 2.785 20 16.93 5.185 5.417 
2 2.785 20 16.93 4.719 4.930 
3 2.770 30 25.40 6.311 6.557 
4 2.770 30 25.40 6.656 6.916 
5 2.770 40 33.87 I1.50 11.951 
6 2.770 40 33.87 11.57 12.020 

Note: a = 

174 

2N+ 1"~ 
---g-y-) ~, 

2(N + 2)HAp 
e~s = (L  - I ) [L  + (N- + l)/] ;,.N = 1.86, L = 40mm, l = 10ram. 



edge, the stress there is fairly fixed regardless of the 
form of the tensile deformation law. However, with 
the removal of the assumption of linear behaviour in 
compression, the results given by the present analysis 
did not show this feature. Accordingly, we must con- 
clude that their results possess a strong limitation 
induced by the imposed linear elastic behaviour in 
compression. 

4. Summary  and recommendations 
In lieu of a summary of the analysis presented in the 
paper, the following recommendations are offered to 
experimenters who intend to use bend tests for charac- 
terizing a material's creep behaviour: 

1. The range of the applied loads should be as wide 
as possible; at least two orders of magnitude in loads 
(e.g. 5 to 600 MPa) are recommended. 

2. In the case where higher moments cannot be 
achieved owing to premature fracture, a supplemental 
test programme either in tension or in comparison 
should be performed for the purpose of reducing com- 
puter work, thus improving the accuracy of the 
results. 

3. Direct measurements of uniform curvature rate 
in the inner span are preferred to load-point displace- 
ments measurements, as the latter induce compli- 
cations such as shearing effects, although the former 
may be more difficult to do. 
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